Introductory Circuit Analysis

FOURTEENTH EDITION

Robert L. Boylestad Brian A. Olivari

INTRODUCTORY CIRCUIT Analysis

Fourteenth Edition

Robert L. Boylestad Brian A. Olivari

Content Management: Tara Warrens Content Production: Deepali Malhotra Product Management: Derril Trakalo Rights and Permissions: Jenell Forschler

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content

Cover Image by Sigmund Årseth.

Copyright © 2023, 2013, 2007 by Pearson Education, Inc. or its affiliates, 221 River Street, Hoboken, NJ 07030. All Rights Reserved. Manufactured in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on the appropriate page within the text.

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks, logos, or icons that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos, icons, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees, or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Boylestad, Robert L., author. | Olivari, Brian A., author.
Title: Introductory Circuit Analysis/Robert L. Boylestad, Brian A. Olivari.
Description: Fourteenth edition. | Boston: Pearson Education, Inc., [2023] | Includes index.
Identifiers: LCCN 2021038341 (print) | LCCN 2021038342 (ebook) | ISBN 9780137594115 (casebound) | ISBN 0137594107 (ebook)
Subjects: LCSH: Electric circuits—Textbooks. | Electric circuit analysis—Data processing—Textbooks.
Classification: LCC TK454.B68 2023 (print) | LCC TK454 (ebook) | DDC 621.319/2—dc23
LC record available at https://lccn.loc.gov/2021038341
LC ebook record available at https://lccn.loc.gov/2021038342

ScoutAutomatedPrintCode

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity, depth, and breadth of all learners' lived experiences.

We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, sex, sexual orientation, socioeconomic status, ability, age, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational content accurately reflects the histories and lived experiences of the learners we serve.

Accessibility

We are also committed to providing products that are fully accessible to all learners. As per Pearson's guidelines for accessible educational Web media, we test and retest the capabilities of our products against the highest standards for every release, following the WCAG guidelines in developing new products for copyright year 2022 and beyond.

You can learn more about Pearson's commitment to accessibility at

https://www.pearson.com/us/accessibility.html

- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content prompts deeper discussions with students and motivates them to expand their own learning (and worldview).

Contact Us

While we work hard to present unbiased, fully accessible content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

2

0

Please contact us with concerns about any potential bias at

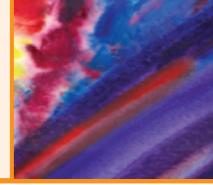
https://www.pearson.com/report-bias.html.

For accessibility-related issues, such as using

assistive technology with Pearson products,

⁹ alternative text requests, or accessibility

documentation, email the Pearson Disability Support team at **disability.support@pearson.com**


This page intentionally left blank

Robert L. Boylestad

In loving memory of my wife Else and our children Eric, Alison and Stacey and our grandchildren Kelcy, Morgan, Britt, Samantha, Codie, Skylar, Lindsey and Aspen.

Brian A. Olivari

To my wife Margie and our children Jenny, Brittany, Meredith and Ben. This page intentionally left blank

Acknowledgments

The cover design was taken from an acrylic painting that Sigmund Årseth, a contemporary Norwegian painter, rendered in response to my request for cover designs that provided a unique presentation of color and light. A friend of the author, he generated an enormous level of interest in Norwegian art in the United States through a Norwegian art form referred to as rosemaling and his efforts in interior decoration and landscape art.

The author would also like to thank Don Johnson, an entrepreneur, author, and educator for his contribution.

CURRENT AND PREVIOUS EDITION REVIEWERS

Kathleen Annis—AEMC Instruments Geno Anderson-Taitung Onesiphorus Children's Home Jen Brophy-Red River Camps, Portage, Maine Tom Brown-LRAD Corporation Professor Leon Chua—University of California, Berkeley Professor Timothy Cochran-Alfred State College Professor Kenneth Cook—Lawrence Technological University Professor Raymond Cwieka-Essex College Professor Raj Desai-Midwestern State University Iulian Dobre-IMSAT Maritime Jessica Fiui-Honda Corporation Ron Forbes-B+K Precision, Inc. Felician Frentiu—IMSAT Maritime F. Halkiadakis-California University of Pennsylvania Professor Gerald Herder-Cal Poly Pomona Don Johnson-Professional Photographer Professor Ron Kalin-Penn State University Cara Kugler-Texas Instruments, Inc. Professor Ohbong Kwon-New York City College of Technology Professor David Malooly-Indiana State University Professor Don Mccann-Maine Maritime Academy, Castine, Maine Professor Kristen Dagan McGee-Naugatuck Valley Community College

Cheryl Mendenhall—Cadence Design Systems, Inc Professor Henry C. Miller-Bluefield State College Professor Mack Mofidi-DeVry University Professor Mostafa Mortezaie—DeVry University Rajashree Narendra-Dayananda Sagar University, Bangalore, India Professor Louis Nashelsky-CUNY Todd R. Nelson—Author and Educator Professor Brian Norton-Oklahoma State University Katie Parker-EarthRoamer Corp. Professor Alireza Rahrooh—Daytona State College Professor Gilberto Medeiras Ribeiro-Universidade Federal de Minar Gerais, Brazil Professor Patrick Riley-California University of Pennsylvania Peter Sanburn-Itron. Inc. Professor William Shepherd-Owens Community College Peggy Suggs-Edison Electric Institute Don Szymanski-Owens Community College Professor William Tefft-Maine Maritime Academy, Castine, Maine Mark Walters-National Instruments, Inc. Stanley Williams-Hewlett Packard, Inc. Professor Chen Xijou-Dalian University of Technology Professor Jianhua Joshua Yang-University of Massachusetts

This page intentionally left blank

Brief Contents

Chapter 1 Introduction 1

Chapter 2 Voltage and Current 35

Chapter 3 Resistance 69

Chapter 4 Ohm's Law, Power, and Energy 107

Chapter 5 Series dc Circuits 133

Chapter 6 Parallel dc Circuits 187

Chapter 7 Series-Parallel Circuits 241

Chapter 8 Methods of Analysis and Selected Topics (dc) 285

Chapter 9 Network Theorems 347

Chapter 10 Capacitors 395

Chapter 11 Inductors 455

Chapter 12 Magnetic Circuits 499

Chapter 13 Sinusoidal Alternating Waveforms 525

Chapter 14 The Basic Elements and Phasors 575 Chapter 15 Series ac Circuits 621

Chapter 16 Parallel ac Circuits 665

Chapter 17 Series-Parallel ac Networks 705

Chapter 18 Methods of Analysis and Selected Topics (AC) 727

Chapter 19 Network Theorems (ac) 767

Chapter 20 Power (AC) 811

Chapter 21 Resonance 845

Chapter 22 Decibels, Filters, and Bode Plots 889

Chapter 23 Transformers 953

Chapter 24 Polyphase Systems 995

Chapter 25 Pulse waveforms and the *R-C* response 1035

Chapter 26 Nonsinusoidal Circuits 1061

Appendixes 1085

Index 1110

This page intentionally left blank

Contents

Chapter 1

Introduction

1.1 The Electrical/Electronics Industry

8

- **1.2** A Brief History 3
- **1.3** Units of Measurement
- **1.4** Systems of Units 9
- **1.5** Significant Figures, Accuracy, and Rounding Off 12
- **1.6** Powers of Ten 14
- **1.7** Fixed-Point, Floating-Point, Scientific, and Engineering Notation 18
- **1.8** Conversion Between Levels of Powers of Ten 20
- **1.9** Conversion Within and Between Systems of Units 22
- 1.10 Symbols 24
- 1.11 Conversion Tables 24
- 1.12 Calculators 25
- 1.13 Computer Analysis 29

Chapter 2

Voltage and Current

- 2.1 Introduction 35
- **2.2** Atoms and their Structure 35
- **2.3** Voltage 38
- **2.4** Current 41
- **2.5** Voltage Sources 44
- 2.6 Ampere-Hour Rating 54
- 2.7 Battery Life Factors 55
- **2.8** Conductors and Insulators 57
- 2.9 Semiconductors 58
- 2.10 Ammeters and Voltmeters 58
- 2.11 Applications 61

Chapter 3

Resistance

1

35

1

- **3.1** Introduction 69
- 3.2 Resistance: Circular Wires 70
- 3.3 Wire Tables 73
- **3.4** Temperature Effects 76
- **3.5** Conductors and the Inferred Absolute Temperature (T_i) 76
- **3.6** Temperature Coefficient of Resistance 78
- **3.7** PPM/°C 79
- **3.8** Types of Resistors 79
- 3.9 Color Coding and Standard Resistor Values 84
- 3.10 Surface Mount Resistors 88
- 3.11 Conductance 89
- **3.12** Ohmmeters 90
- 3.13 Resistance: Metric Units 91
- 3.14 The Fourth Element—The Memristor 93
- 3.15 Superconductors 94
- 3.16 Thermistors 96
- 3.17 Photoconductive Cell 97
- 3.18 Varistors 97
- 3.19 Applications 98

Chapter 4 Ohm's Law, Power, and Energy

107

- **4.1** Introduction 107
- 4.2 Ohm's Law 107
- 4.3 Plotting Ohm's Law 110
- **4.4** Power 113
- 4.5 Energy 115
- 4.6 Efficiency 119
- 4.7 Circuit Breakers, GFCIs, and Fuses 122
- 4.8 Applications 123

xii ||| CONTENTS

Chapter 5

Series dc Circuits

133

- 5.1 Introduction 133
- 5.2 Series Resistors 134
- 5.3 Series Circuits 137
- 5.4 Power Distribution in a Series Circuit 143
- 5.5 Voltage Sources in Series 144
- 5.6 Kirchhoff's Voltage Law 146
- 5.7 Voltage Division in a Series Circuit 150
- 5.8 **Interchanging Series Elements** 154
- 5.9 Notation 155
- 5.10 Ground Connection Awareness 160
- 5.11 Voltage Regulation and the Internal Resistance of Voltage Sources 161
- 5.12 Loading Effects of Instruments 166
- 168 5.13 Protoboards (Breadboards)
- 5.14 Applications 170

Chapter 6

Parallel dc Circuits

187

241

- 6.1 Introduction 187
- 6.2 Parallel Resistors 187
- 197 6.3 Parallel Circuits
- 6.4 Power Distribution in a Parallel Circuit 203
- 6.5 Kirchhoff's Current Law 205
- 6.6 Current Divider Rule 209
- 6.7 Voltage Sources in Parallel 215
- 6.8 Open and Short Circuits 216
- 6.9 Voltmeter Loading Effects 219
- 6.10 Summary Table 221
- 6.11 Troubleshooting Techniques 222
- 6.12 Protoboards (Breadboards) 223
- 6.13 Applications 224

Chapter 7

Series-Parallel Circuits

- 7.1 241 Introduction
- 7.2 Series-Parallel Networks 242
- 7.3 Reduce and Return Approach 243
- 7.4 Block Diagram Approach 245

- 7.5 **Descriptive Examples** 249
- 7.6 Ladder Networks 257
- 7.7 Voltage Divider Supply (Unloaded and Loaded) 259
- 7.8 Potentiometer Loading 262
- 7.9 Impact of Shorts and Open Circuits 264
- 7.10 Ammeter, Voltmeter, and Ohmmeter Design 267
- 7.11 Applications 271

Chapter 8

Methods of Analysis and Selected Topics (dc)

- 8.1 Introduction 285
- 8.2 Current Sources 286
- 8.3 Branch-Current Analysis 292
- 8.4 Mesh Analysis (General Approach) 299
- 8.5 Mesh Analysis (Format Approach) 306
- 8.6 Nodal Analysis (General Approach) 310
- 8.7 318 Nodal Analysis (Format Approach)
- 8.8 Bridge Networks 322
- Y- Δ (T- π) and Δ -Y (π -T) Conversions 326
- 8.10 Applications 331

Chapter 9

Network Theorems

- 9.1 Introduction 347
- 9.2 Superposition Theorem 347
- 9.3 Thévenin's Theorem 355
- 9.4 Norton's Theorem 367
- 9.5 Maximum Power Transfer Theorem 371
- 9.6 Millman's Theorem 380
- 9.7 Substitution Theorem 383
- 9.8 385 **Reciprocity Theorem**

Chapter 10

Capacitors

- 10.1 Introduction 395
- 10.2 The Electric Field 395
- 10.3 Capacitance 397

347

285

8.9

10.4 Capacitors 401 10.5 Transients in Capacitive Networks: The Charging Phase 414 10.6 Transients in Capacitive Networks: The Discharging Phase 422 10.7 Initial Conditions 428 10.8 Instantaneous Values 431 10.9 Thévenin Equivalent: $\tau = R_{TH}C$ **10.10** The Current i_C 435 10.11 Capacitors in Series and in Parallel 10.12 Energy Stored by a Capacitor 441 10.13 Stray Capacitances 441 **10.14** Applications 442

432

437

455

499

Chapter 11

Inductors

- 11.1 Introduction 455
- 11.2 Magnetic Field 455
- 11.3 Inductance 460
- **11.4** Induced Voltage v_L 466
- **11.5** *R-L* Transients: The Storage Phase 468
- **11.6** Initial Conditions 471
- **11.7** *R-L* Transients: The Release Phase 473
- **11.8** Thévenin Equivalent: $\tau = L/R_{Th}$ 478
- **11.9** Instantaneous Values 480
- **11.10** Average Induced Voltage: $v_{L_{out}}$ 481
- 11.11 Inductors in Series and in Parallel 483
- 11.12 Steady-State Conditions 484
- **11.13** Energy Stored by an Inductor 486
- 11.14 Applications 487

Chapter 12

Magnetic Circuits

- 12.1 Introduction 499
- 12.2 Magnetic Field 499
- 12.3 Reluctance 500
- **12.4** Ohm's Law for Magnetic Circuits 501
- **12.5** Magnetizing Force 501
- 12.6 Hysteresis 502
- 12.7 Ampère's Circuital Law 506
- **12.8** Flux Φ 507
- **12.9** Series Magnetic Circuits: Determining *NI* 507

- **12.10** Air Gaps 511
- 12.11 Series-Parallel Magnetic Circuits 513
- **12.12** Determining Φ 515
- 12.13 Applications 517

Chapter 13

Sinusoidal Alternating Waveforms 525

- 13.1 Introduction 525
- **13.2** Sinusoidal AC Voltage Characteristics and Definitions 526
- **13.3** Frequency Spectrum 529
- **13.4** The Sinusoidal Waveform 533
- 13.5 General Format for the Sinusoidal Voltage or Current 537
- **13.6** Phase Relations 540
- **13.7** Average Value 546
- **13.8** Effective (rms) Values 552
- 13.9 Converters and Inverters 558
- **13.10** ac Meters and Instruments 561
- 13.11 Applications 564

Chapter 14

The Basic Elements and Phasors 575

- 14.1 Introduction 575
- **14.2** Response of Basic *R*, *L*, and *C* Elements to a Sinusoidal Voltage or Current 578
- 14.3 Frequency Response of the Basic Elements 585
- **14.4** Average Power and Power Factor 591
- 14.5 Complex Numbers 597
- 14.6 Rectangular Form 597
- **14.7** Polar Form 598
- 14.8 Conversion Between Forms 599
- **14.9** Mathematical Operations with Complex Numbers 601
- **14.10** Calculator Methods with Complex Numbers 607
- 14.11 Phasors 609

Chapter 15

Series AC Circuits

- **15.1** Introduction 621
- **15.2** Resistive Elements 622

xiv ||| CONTENTS

- 15.3 **Inductive Elements** 623
- 15.4 **Capacitive Elements** 625
- 15.5 Impedance Diagram 627
- 15.6 Series Configuration 628
- 15.7 Voltage Divider Rule 635
- 15.8 Frequency Response for Series ac Circuits 638
- 15.9 Summary: Series AC Circuits 651
- **15.10** Phase Measurements 651
- **15.11** Applications 654

Chapter 16

Parallel ac Circuits Introduction

16.1

665

705

727

- 16.2 **Total Impedance** 665
- 16.3 **Total Admittance** 667
- 16.4 Parallel ac Networks 671
- 16.5 Current Divider Rule (CDR) 678

665

- Frequency Response of Parallel Elements 16.6 678
- Summary: Parallel AC Networks 16.7 688
- 16.8 Equivalent Circuits 689
- 16.9 Applications 694

Chapter 17

Series-Parallel ac Networks

- 17.1 Introduction 705
- 17.2 Illustrative Examples 705
- 17.3 Ladder Networks 715
- 17.4 Grounding 716
- 17.5 Applications 719

Chapter 18

Methods of Analysis and Selected Topics (AC)

- 18.1 Introduction 727
- 18.2 Independent Versus Dependent (Controlled) Sources 727
- 18.3 Source Conversions 728
- 18.4 Mesh Analysis 731
- 18.5 Nodal Analysis 739

- 18.6 Bridge Networks (ac) 750
- 18.7 Δ -Y, Y- Δ Conversions 755

Chapter 19

Network Theorems (ac)

- 19.1 Introduction 767
- 19.2 Superposition Theorem 767
- 19.3 Thévenin's Theorem 775
- 19.4 Norton's Theorem 787
- 19.5 Maximum Power Transfer Theorem 793
- 19.6 Substitution, Reciprocity, and Millman's Theorems 797
- 19.7 798 Application

Chapter 20

Power (AC)

- 20.1 Introduction 811
- 20.2 **General Equation** 811
- 812 20.3 **Resistive Circuit**
- 20.4 814 Apparent Power
- 20.5 Inductive Circuit and Reactive Power 816
- 20.6 Capacitive Circuit 819
- 20.7 The Power Triangle 821
- 20.8 The Total P, Q, and S 823
- 20.9 Power-Factor Correction 828
- **20.10** Power Meters 833
- 20.11 Effective Resistance 833
- 20.12 Applications 836

Chapter 21

Resonance

- 21.1 Introduction 845
- 21.2 Series Resonant Circuit 847
- 21.3 The Quality Factor (Q)850
- 21.4 Z_T Versus Frequency 852
- 21.5 Selectivity 853
- 21.6 V_R, V_L and V_C 856
- 21.7 Practical Considerations 858
- 21.8 Summary 858
- 21.9 Examples (Series Resonance) 859

767

811

995

1035

- **21.10** Parallel Resonant Circuit 861
- 21.11 Selectivity Curve for Parallel Resonant Circuits 865
- **21.12** Effect of $Q_l \ge 10$ 868
- 21.13 Summary Table 871
- **21.14** Examples (Parallel Resonance) 872
- 21.15 Applications 879

Chapter 22

Decibels, Filters, and Bode Plots

22.1 Introduction 889

- 22.2 Properties of Logarithms 894
- 22.3 Decibels 895
- 22.4 Filters 901
- **22.5** *R-C* Low-Pass Filter 902
- **22.6** *R-C* High-Pass Filter 907
- **22.7** Band-Pass Filters 910
- **22.8** Band-Stop Filters 914
- **22.9** Double-Tuned Filter 916
- **22.10** Other Filter Configurations 918
- **22.11** Bode Plots 921
- **22.12** Sketching the Bode Response 928
- **22.13** Additional Properties of Bode Plots 933
- 22.14 Crossover Networks 940
- 22.15 Applications 941

Chapter 23

Transformers

- 23.1 Introduction 953
- 23.2 Basic Operation 953
- 23.3 Reflected Impedance and Power 959
- **23.4** Impedance Matching, Isolation, and Displacement 961
- 23.5 Equivalent Circuit (Iron-Core Transformer) 966
- 23.6 Frequency Considerations 969
- 23.7 Series Connection of Mutually Coupled Coils 970
- 23.8 Air-Core Transformer 973
- 23.9 Nameplate Data 975
- 23.10 Types of Transformers 977

- 23.11 Tapped and Multiple-Load Transformers 979
- 23.12 Networks with Magnetically Coupled Coils 980
- 23.13 Current Transformers 981
- **23.14** Applications 982

Chapter 24

Polyphase Systems

- 24.1 Introduction 995
- 24.2 Three-Phase Generator 996
- 24.3 Y-Connected Generator 997
- 24.4 Phase Sequence (Y-Connected Generator) 999
- 24.5 Y-Connected Generator with a Y-Connected Load 1001
- **24.6** Y- Δ System 1003
- **24.7** \triangle -Connected Generator 1005
- **24.8** Phase Sequence (Δ -Connected Generator) 1006
- **24.9** Δ - Δ Δ -Y Three-Phase Systems 1006
- 24.10 Power 1008
- 24.11 Three-Wattmeter Method 1014
- 24.12 Two-Wattmeter Method 1015
- 24.13 Unbalanced, Three-Phase, Four-Wire, Y-Connected Load 1018
- **24.14** Unbalanced, Three-Phase, Three-Wire, Y-Connected Load 1020
- 24.15 Residential and Industrial Service Distribution Systems 1023

Chapter 25

Pulse waveforms and the *R-C* response

- **25.1** Introduction 1035
- 25.2 Ideal Versus Actual 1035
- **25.3** Pulse Repetition Rate and Duty Cycle 1039
- **25.4** Average Value 1042
- 25.5 Transient *R*-*C* Networks 1043
- **25.6** *R-C* Response to Square-Wave Inputs 1046
- 25.7 Oscilloscope Attenuator and Compensating Probe 1053
- **25.8** Application 1055

953

Chapter 26

Nonsinusoidal circuits

26.1 Introduction 1061

- **26.2** Fourier Series 1062
- 26.3 Fourier Expansion of a Square Wave 1069
- **26.4** Fourier Expansion of a Half-Wave Rectified Waveform 1071
- 26.5 Fourier Spectrum 1072

Appendixes

- 26.6 Circuit Response to a Nonsinusoidal Input 1073
- **26.7** Addition and Subtraction of Nonsinusoidal Waveforms 1079

Appendix B

Determinants 1089

Appendix C

1061

1085

Greek Alphabet 1097

Appendix D

Magnetic Parameter Conversions 1098

Appendix E

Maximum Power Transfer Conditions 1099

Appendix F

Answers to Selected Odd-Numbered Problems 1101

Appendix A

Conversion Factors 1086

Index

Preface

Welcome to the fourteenth edition. Over the fifty plus years since the first edition in 1968, the revisions have typically involved adding additional content based on the changes in curriculum. This new fourteenth edition is more about refining and updating content to provide a revision that ensures that the most current and relevant content is provided.

We are also excited about the ways students can purchase this textbook to ensure that they have the most effective and affordable options.

Students can choose from the affordable, rent-to-own print book option or a variety of eText options. With the Pearson eText, students can search the text, use the study tools such as flashcards, make notes online, print out reading assignments that incorporate the notes they take during lectures, and bookmark important passages for later review.

The most notable changes include the following:

- The over 2000 images are as current as possible with many new or modified for this edition.
- The overall design of the text has been updated and enhanced for a more modern, accessible layout.
- The Multisim and PSpice computer material has been removed based on the vast majority of reviewers stating it was not covered. This valuable feedback indicated the importance of covering fundamental theories clearly rather than focusing on the mechanics of applying computer methods.
- Topics requiring a solid understanding of power factor, lead, and lag concepts have been significantly enhanced throughout the text.
- Laboratory experiments and summary of equations to accompany the text have been carefully reviewed for accuracy and changes made where required.
- Problems were carefully reviewed to ensure that they progressed from the simple to the more complex in each section.
- All solutions were checked carefully to ensure accuracy.

The TI 89 Titanium calculator continues to be the choice for this text, and we have provided sufficient detail in the text to perform all the mathematical techniques required without having to refer to the calculator manual provided. In some cases, short-cut methods are introduced that are helpful in what they can perform in the shortest of time. In every respect we feel the TI-89 will serve the student well in their current studies and those to follow.

The feedback we have received from users of the thirteenth edition has been very helpful in defining areas that needed additional explanation and coverage. We always consider the effort to share feedback to be extraordinary since the instructor has so many other obligations in today's teaching environment. The comments we have received directly from users regarding potential errors in the solutions were taken seriously; and we reviewed their comments carefully to ensure that the content is correct and clarified. However, if you have questions about any of the content or solutions, we welcome your comments and will respond to any inquiry as soon as possible.

We realize there is always room for improvement, and while not as obvious as it was in earlier editions, there is always something you can do to take the text one step higher.

> Robert L. Boylestad Brian A. Olivari

SUPPLEMENTS

To enhance the learning process, a full supplements package accompanies this text and is available to students and instructors using the text for a course.

Student Resources

• Laboratory Manual, ISBN 9780137594146

Instructor Resources

Instructor Resources can be downloaded at www.pearsonhighered.com/irc. If you don't already have a username and password for access, you can request access at www.pearsonhighered.com/irc.

• Instructor's Resource Manual, containing text solutions.

Alternative Versions Available

- **Print:** The fourteenth edition is now available as an affordable, rent-to-own option.
- **eBooks:** This text is also available in multiple eBook formats. These are a great choice for busy students that are looking to save money. As an alternative to renting/ purchasing the printed textbook, students can purchase an electronic version of the same content. **Pearson eText** is an easy-to-use digital textbook. It lets students customize how they study and learn with enhanced search and the ability to create flashcards, highlight, add notes, and listen to the audio version all in one place. The mobile app lets students learn wherever life takes them, offline or online. For more information on Pearson eText, visit www.pearson.com/learner.

About the Authors

ROBERT L. BOYLESTAD

The original contract for *Introductory Circuit Analysis* was signed in 1965 resulting in a publishing date of 1968—a current life history of some 60 years. The first 13 editions were written by me with an average time interval between editions of some 4.5 years. Upon completion of each edition, I felt that I had done all I can to make it the best available. However, as the years passed, there was always something that could withstand some improvement. For the fourteenth edition I felt it wise to join hands with Professor Brian Olivari (Maine Maritime Academy) to be sure that I was fully aware of recent trends in the scope and depth of coverage in various subject areas. I feel it has been a wonderful union in developing the content of this edition.

My history in the educational field includes some 45 years at various professorial ranks in the City University, New York. There was also a period of some 10 years as assistant dean at the Thayer School of Engineering at Dartmouth. During my teaching career I was fortunate enough to find the time to write some seven texts related to the electrical/electronics field. The two most successful are Introductory Circuit Analysis and Electronic Devices and Circuit Theory (co-authored with Professor Louis Nashelsky). The first one is in its 14th edition now and the latter is in its 11th edition. Both texts have been translated into foreign languages with the ICA text translated into seven languages: Arabic, Chinese, French, Korean, Portuguese, Spanish, and Taiwanese. In addition to Introductory Circuit Analysis, a number of manuals and texts related to computer languages such as BASIC Applied to Circuit Analysis, Manual for the IBM PC jr., and BASIC for Electronics and Computer Technologies were also published.

I look forward to any response from users of this fourteenth edition to ensure that the text remains current in the years to come.

BRIAN A. OLIVARI

I was honored to have been asked by Professor Boylestad to collaborate on the fourteenth edition of *Introductory Circuit Analysis*. I could never have imagined being co-author on the latest edition when I first used Professor Boylestad's *Electronic Devices and Circuit Theory* textbook as a student back in 1977, and then the *eleventh edition of Introductory Circuit Analysis* as a professor in 2008.

As a faculty member at Maine Maritime Academy for over 15 years, my teaching has focused on both electrical engineering and mathematics. In engineering, my primary interest has been in circuit analysis and electronics. In mathematics, I have been committed to preparing my math students to be successful at solving engineering problems.

Prior to teaching at Maine Maritime Academy, much of my professional experience came from working in the telecommunications industry at Western Electric, Rochester Telephone, and, most notably, Bell Labs where I was part of a team of engineers (systems, mechanical, electrical, and software) that developed the first–of-its-kind, stored-program–controlled D5 Digital Channel Bank System. Additionally, I served as the associate editor for the IEEE Solid-State Circuits Conference Digest of Technical Papers and taught briefly at Rochester Institute of Technology. This page intentionally left blank

Introduction

Objectives

- Become aware of the rapid growth of the electrical/ electronics industry over the past century.
- Understand the importance of applying a unit of measurement to a result or measurement and to ensure that the numerical values substituted into an equation are consistent with the unit of measurement of the various quantities.
- Become familiar with the International System of Units (SI) also referred to as the metric system.
- Understand the importance of powers of ten and how to work with them in any numerical calculation.
- Be able to convert any quantity, in any system of units, to another system with confidence.

1.1 THE ELECTRICAL/ELECTRONICS INDUSTRY

Over the past few decades, technology has been changing at an ever-increasing rate. The pressure to develop new products, improve the performance and reliability of existing systems, and create new markets will only accelerate that rate. This pressure, however, is also what makes this field so exciting. New ways of storing and manipulating information, manufacturing integrated circuits, and developing software-embedded hardware systems that can "think" on their own based on input data are only a few possibilities.

Change has always been part of the human experience, but in the past, it was gradual. In recent years, however, the rate at which change in the electrical/electronics industry has been taking place is mind-boggling. Just think, for example, it was only a few years ago that "flatscreen" TVs, with wide, flat screens were introduced. Already, these have been eclipsed by much wider 4K ultra high definition (UHD) and 3D models.

Miniaturization has resulted in huge advances in electronic systems. For example, advancement in this technology has allowed cell phones that originally were the size of notebooks to now be smaller than a deck of playing cards. These so-called smartphones (devices), such as an iPhone 12 (2020), provide a multitude of extremely desirable features, in addition to being able to make simple telephone calls. Such features include a multi-touch glass capacitive screen, mp3 music player (iPod capability), web browser, email, text messaging, calendar and contacts, mobile game player, facial recognition (for security purposes), 4K HD video recording, high-resolution camera, video conferencing (FaceTime), GPS, Bluetooth, Wi-Fi, and the ability to run over 2 million software applications "Apps," to name a few. Remarkably, this iPhone can also simultaneously store in its 256 GB memory: 6000 songs, 30,000 photos, as well as 18 hours of 4K video recorded at 30 fps. The Apple Watch, and other "smartwatches," provide smartphone users with the ability to extend some of their devices' capabilities to their wrists. Of course, laptop computers, iPads, and the like, have become ubiquitous in our society, primarily due to rapid technological advances in electronic systems. Nearly invisible and more powerful hearing aids with background noise cancellation features are now available for the hearing impaired. The list of new or improved products continues to expand because significantly smaller electronic systems have been developed.

Most of us would agree that the computer has revolutionized our daily lives, in ways never imagined not that long ago—and it continues to do so in an accelerated fashion. When we compare the Guidance Computer aboard the Apollo 11 spacecraft, which landed on the moon back in 1969, with a commonly used cell phone in use today (the iPhone), we discover Apollo's computer weighed 70 pounds and offered 2.3 MHz of processing power. Whereas, the performance data for even a much older generation iPhone 6 (2014) is staggering. At 3.36 billion instructions per second, the iPhone 6's clock is 32,600 times faster than the best on board computers of the Apollo era and could perform instructions 120,000,000 times faster. You wouldn't be wrong in saying an iPhone could be used to guide 120,000,000 Apollo-era spacecrafts to the moon, all at the same time. And ... the iPhone weighs a mere 4.6 ounces!

Spurred on by the continuing process of miniaturization is a serious and growing interest in artificial intelligence, a term first used in 1955, as a drive to replicate the brain's function with a packaged electronic equivalent. Although only about 3 pounds in weight, a size equivalent to about 2.5 pints of liquid with a power drain of about 20 watts (half that of a 40-watt light bulb), the brain contains over 100 billion neurons that have the ability to "fire" 200 times a second. Imagine the number of decisions made per second if all are firing at the same time! This number, however, is undaunting to researchers who feel that an electronic package capable of emulating the human brain is a genuine possibility in the next 10 to 15 years. Of course, including emotional qualities will be the biggest challenge, but otherwise researchers feel the advances of recent years are clear evidence that it is a real possibility. Consider how much of our daily lives is already decided for us with automatic brake control, programmed parallel parking, GPS, Web searching, and so on. The move is obviously strong and on its way. Also, when you consider how far we have come since the development of the first transistor some 67 years ago, who knows what might develop in the next decade or two?

This reduction in size of electronic systems is due primarily to an important innovation introduced in 1958—the **integrated circuit (IC)**. An integrated circuit can now contain features less than 50 nanometers across. The fact that measurements are now being made in nanometers has resulted in the terminology **nanotechnology** to refer to the production of integrated circuits called *nanochips*. To better appreciate the impact of nanometer measurements, consider drawing 100 lines within the boundaries of 1 inch. Then attempt drawing 1000 lines within the same length. Cutting 50-nanometer features would require drawing over 500,000 lines in 1 inch. The integrated circuit shown in Fig. 1.1 is an intel[®] CoreTM i7 6-core processor that has around 3 billion transistors—a number hard to comprehend.

However, before a decision is made on such dramatic reductions in size, the system must be designed and tested to determine if it is worth constructing as an integrated circuit. That design process requires engineers who know the characteristics of each device used in the system, including undesirable characteristics that are part of any electronic element. In other words, there are *no ideal (perfect) elements* in an electronic design. Considering the limitations of each component is necessary

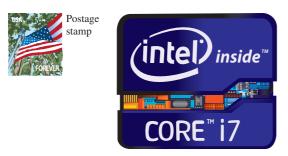


FIG. 1.1 Intel[®] Core[™] i7 6-core processer.

to ensure a reliable response under all conditions of temperature, vibration, and effects of the surrounding environment. To develop this awareness requires time and must begin with understanding the basic characteristics of the device, as covered in this text. One of the objectives of this text is to explain how ideal components work and their function in a network. Another is to explain conditions in which components may not be ideal.

One of the very positive aspects of the learning process associated with electric and electronic circuits is that once a concept or procedure is clearly and correctly understood, it will be useful throughout the career of the individual at any level in the industry. Once a law or equation is understood, it will not be replaced by another equation as the material becomes more advanced and complicated. For instance, one of the first laws to be introduced is Ohm's law. This law provides a relationship between forces and components that will always be true, no matter how complicated the system becomes. In fact, it is an equation that will be applied in various forms throughout the design of the entire system. The use of the basic laws may change, but the laws will not change and will always be applicable.

It is vitally important to understand that the learning process for circuit analysis is sequential. That is, the first few chapters establish the foundation for the remaining chapters. Failure to properly understand the opening chapters will only lead to difficulties understanding the material in the chapters to follow. This first chapter provides a brief history of the field followed by a review of mathematical concepts necessary to understand the rest of the material.

1.2 A BRIEF HISTORY

In the sciences, once a hypothesis is proven and accepted, it becomes one of the building blocks of that area of study, permitting additional investigation and development. Naturally, the more pieces of a puzzle available, the more obvious is the avenue toward a possible solution. In fact, history demonstrates that a single development may provide the key that will result in a mushrooming effect that brings the science to a new plateau of understanding and impact.

If the opportunity presents itself, read one of the many publications reviewing the history of this field. Space requirements are such that only a brief review can be provided here. There are many more contributors than could be listed, and their efforts have often provided important keys to the solution of some very important concepts.

Throughout history, some periods were characterized by what appeared to be an explosion of interest and development in particular areas. As you will see from the discussion of the late 1700s and the early 1800s, inventions, discoveries, and theories came fast and furiously. Each new concept broadens the possible areas of application until it becomes almost impossible to trace developments without picking a particular area of interest and following it through. In the review, as you read about the development of radio, television, and computers, keep in mind that similar progressive steps were occurring in the areas of the telegraph, the telephone, power generation, the phonograph, appliances, and so on.

There is a tendency when reading about the great scientists, inventors, and innovators to believe that their contribution was a totally individual effort. In many instances, this was not the case. In fact, many of the great contributors had friends or associates who provided support and encouragement in their efforts to investigate various theories. At the very least, they were aware of one another's efforts to the degree possible in the days when a letter was often the best form of communication. In particular, note the closeness of the dates during periods of rapid development. One contributor seemed to spur on the efforts of the others or possibly provided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or computer engineers as we know them today. In most cases, they were physicists, chemists, mathematicians, or even philosophers. In addition, they were not from one or two communities of the Old World. The home country of many of the major contributors introduced in the paragraphs to follow is provided to show that almost every established community had some impact on the development of the fundamental laws of electrical circuits.

As you proceed through the remaining chapters of the text, you will find that a number of the units of measurement bear the name of major contributors in those areas—*volt* after Count Alessandro Volta, *ampere* after André Ampère, *ohm* after Georg Ohm, and so forth—fitting recognition for their important contributions to the birth of a major field of study.

Time charts indicating a limited number of major developments are provided in Fig. 1.2, primarily to identify specific periods of rapid development and to reveal how far we have come in the last 40 years. In essence, the current state of the art is a result of efforts that began in earnest some 250 years ago, with progress in the last 100 years being almost exponential.

As you read through the following brief review, try to sense the growing interest in the field and the enthusiasm and excitement that must have accompanied each new revelation. Although you may find some of the terms used in the review new and essentially meaningless, the remaining chapters will explain them thoroughly.

The Beginning

The phenomenon of **static electricity** has intrigued scholars throughout history. The Greeks called the fossil resin substance so often used to demonstrate the effects of static electricity *elektron*, but no extensive study was made of the subject until William Gilbert researched the phenomenon in 1600. In the years to follow, there was a continuing investigation of electrostatic charge by many individuals, such as Otto von

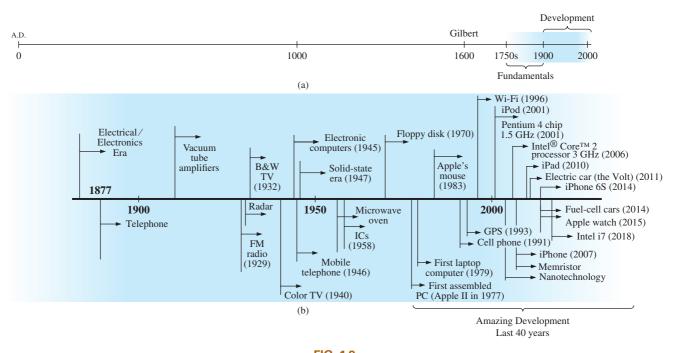


FIG. 1.2 Time charts: (a) long-range, (b) expanded.

Guericke, who developed the first machine to generate large amounts of charge, and Stephen Gray, who was able to transmit electrical charge over long distances on silk threads. Charles DuFay demonstrated that charges either attract or repel each other, leading him to believe that there were two types of charge—a theory we subscribe to today with our defined positive and negative charges.

There are many who believe that the true beginnings of the electrical era lie with the efforts of Pieter van Musschenbroek and Benjamin Franklin. In 1745, van Musschenbroek introduced the **Leyden jar** for the storage of electrical charge (the first capacitor) and demonstrated electrical shock (and therefore the power of this new form of energy). Franklin used the Leyden jar some 7 years later to establish that lightning is simply an electrical discharge, and he expanded on a number of other important theories, including the definition of the two types of charge as *positive* and *negative*. From this point on, new discoveries and theories seemed to occur at an increasing rate as the number of individuals performing research in the area grew.

In 1784, Charles Coulomb demonstrated in Paris that the force between charges is inversely related to the square of the distance between the charges. In 1791, Luigi Galvani, professor of anatomy at the University of Bologna, Italy, performed experiments on the effects of electricity on animal nerves and muscles. The first **voltaic cell**, with its ability to produce electricity through the chemical action of a metal dissolving in an acid, was developed by another Italian, Alessandro Volta, in 1799.

The fever pitch continued into the early 1800s, with Hans Christian Oersted, a Danish professor of physics, announcing in 1820 a relationship between magnetism and electricity that serves as the foundation for the theory of **electromagnetism** as we know it today. In the same year, a French physicist, André Ampère, demonstrated that there are magnetic

effects around every current-carrying conductor and that current-carrying conductors can attract and repel each other just like magnets. In the period 1826 to 1827, a German physicist, Georg Ohm, introduced an important relationship between potential, current, and resistance that we now refer to as Ohm's law. In 1831, an English physicist, Michael Faraday, demonstrated his theory of *electromagnetic induction*, whereby a changing current in one coil can induce a changing current in another coil, even though the two coils are not directly connected. Faraday also did extensive work on a storage device he called the condenser, which we refer to today as a *capacitor.* He introduced the idea of adding a dielectric between the plates of a capacitor to increase the storage capacity (Chapter 10). James Clerk Maxwell, a Scottish professor of natural philosophy, performed extensive mathematical analyses to develop what are currently called Maxwell's equations, which support the efforts of Faraday linking electric and magnetic effects. Maxwell also developed the electromagnetic theory of light in 1862, which, among other things, revealed that electromagnetic waves travel through air at the velocity of light (186,000 miles per second or 3×10^8 meters per second). In 1888, a German physicist, Heinrich Rudolph Hertz, through experimentation with lower-frequency electromagnetic waves (microwaves), substantiated Maxwell's predictions and equations. In the mid-1800s, Gustav Robert Kirchhoff introduced a series of laws of voltages and currents that find application at every level and area of this field (Chapters 5 and 6). In 1895, another German physicist, Wilhelm Röntgen, discovered electromagnetic waves of high frequency, commonly called X-rays today.

By the end of the 1800s, a significant number of the fundamental equations, laws, and relationships had been established, and various fields of study, including electricity, electronics, power generation and distribution, and communication systems, started to develop in earnest.

The Age of Electronics

Radio The true beginning of the electronics era is open to debate and is sometimes attributed to efforts by early scientists in applying potentials across evacuated glass envelopes. However, many trace the beginning to Thomas Edison, who added a metallic electrode to the vacuum of the tube and discovered that a current was established between the metal electrode and the filament when a positive voltage was applied to the metal electrode. The phenomenon, demonstrated in 1883, was referred to as the Edison effect. In the period to follow, the transmission of radio waves and the development of the radio received widespread attention. In 1887, Heinrich Hertz, in his efforts to verify Maxwell's equations, transmitted radio waves for the first time in his laboratory. In 1896, an Italian scientist, Guglielmo Marconi (often called the father of the radio), demonstrated that telegraph signals could be sent through the air over long distances (2.5 kilometers) using a grounded antenna. In the same year, Aleksandr Popov sent what might have been the first radio message some 300 yards. The message was the name "Heinrich Hertz" in respect for Hertz's earlier contributions. In 1901, Marconi established radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison to develop the first diode, commonly called **Fleming's valve**—actually the first of the *electronic devices*. The device had a profound impact on the design of detectors in the receiving section of radios. In 1906, Lee De Forest added a third element to the vacuum structure and created the

first amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong built the first regenerative circuit to improve receiver capabilities and then used the same contribution to develop the first nonmechanical oscillator. By 1915, radio signals were being transmitted across the United States, and in 1918 Armstrong applied for a patent for the superheterodyne circuit employed in virtually every television and radio to permit amplification at one frequency rather than at the full range of incoming signals. The major components of the modern-day radio were now in place, and sales in radios grew from a few million dollars in the early 1920s to over \$1 billion by the 1930s. The 1930s were truly the golden years of radio, with a wide range of productions for the listening audience.

Television (TV) The 1930s were also the true beginnings of the television era, although development on the picture tube began in earlier years with Paul Nipkow and his *electrical telescope* in 1884 and John Baird and his long list of successes, including the transmission of television pictures over telephone lines in 1927 and over radio waves in 1928, and simultaneous transmission of pictures and sound in 1930. In 1932, NBC installed the first commercial television antenna on top of the Empire State Building in New York City, and RCA began regular broadcasting in 1939. World War II slowed development and sales, but in the mid-1940s the number of TV sets grew from a few thousand to a few million. Color television became popular in the early 1960s.

Computers The earliest computer system can be traced back to Blaise Pascal in 1642 with his mechanical machine for adding and subtracting numbers. In 1673, Gottfried Wilhelm von Leibniz used the Leibniz wheel to add multiplication and division to the range of operations, and in 1823 Charles Babbage developed the difference engine to add the mathematical operations of sine, cosine, logarithms, and several others. In the years to follow, improvements were made, but the system remained primarily mechanical until the 1930s when electromechanical systems using components such as relays were introduced. It was not until the 1940s that totally electronic systems became the new wave. It is interesting to note that, even though IBM was formed in 1924, it did not enter the computer industry until 1937. An entirely electronic system known as ENIAC was dedicated at the University of Pennsylvania in 1946. It contained 18,000 tubes and weighed 30 tons but was several times faster than most electromechanical systems. Although other vacuum tube systems were built, it was not until the birth of the solid-state era that computer systems experienced a major change in size, speed, and capability.

The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H. Brattain of Bell Telephone Laboratories demonstrated the point-contact **transistor** (Fig. 1.3), an amplifier constructed entirely of solid-state materials with no requirement for a vacuum, glass envelope, or heater voltage for the filament. Although reluctant at first due to the vast amount of material available on the design, analysis, and synthesis of tube networks, the industry eventually accepted this new technology as the wave of the future. In 1958, the first **integrated circuit (IC)** chip was developed at Texas Instruments, and in 1961 the first commercial

FIG. 1.3 The first transistor. SSPL/Getty Images

integrated circuit was manufactured by the Fairchild Corporation. Today some one trillion integrated circuits are manufactured each year.

It is impossible to review properly the entire history of the electrical/ electronics field in a few pages. The effort here, both through the discussion and the time graphs in Fig. 1.2, was to reveal the amazing progress of this field in the last 50 years. The growth appears to be truly exponential since the early 1900s, raising the interesting question, Where do we go from here? The time chart suggests that the next few decades will probably contain many important innovative contributions that may cause an even faster growth curve than we are now experiencing.

1.3 UNITS OF MEASUREMENT

One of the most important rules to remember and apply when working in any field of technology is to use the correct units when substituting numbers into an equation. Too often we are so intent on obtaining a numerical solution that we overlook checking the units associated with the numbers being substituted into an equation. Results obtained, therefore, are often meaningless. Consider, for example, the following very fundamental physics equation:

$$v = \frac{d}{t}$$
 $v = \text{velocity}$
 $d = \text{distance}$
 $t = \text{time}$
(1.1)

Assume, for the moment, that the following data are obtained for a moving object:

$$d = 4000 \text{ ft}$$
$$t = 1 \text{ min}$$

and v is desired in miles per hour. Often, without a second thought or consideration, the numerical values are simply substituted into the equation, with the result here that

$$v = \frac{d}{t} = \frac{4000 \text{ ft}}{1 \text{ min}} = 4000 \text{ mph}$$

As indicated above, the solution is totally incorrect. If the result is desired in *miles per hour*, the unit of measurement for distance must be *miles*, and that for time, *hours*. In a moment, when the problem is analyzed properly, the extent of the error will demonstrate the importance of ensuring that

the numerical value substituted into an equation must have the unit of measurement specified by the equation.

The next question is normally, How do I convert the distance and time to the proper unit of measurement? A method is presented in Section 1.9 of this chapter, but for now it is given that

1 mi = 5280 ft
4000 ft = 0.76 mi
1 min =
$$\frac{1}{60}$$
h = 0.017 h

Substituting into Eq. (1.1), we have

$$v = \frac{d}{t} = \frac{0.76 \text{ mi}}{0.017 \text{ h}} = 44.71 \text{ mph}$$

which is significantly different from the result obtained before.

To complicate the matter further, suppose the distance is given in kilometers, as is now the case on many road signs. First, we must realize that the prefix *kilo* stands for a multiplier of 1000 (to be introduced in Section 1.5), and then we must find the conversion factor between kilometers and miles. If this conversion factor is not readily available, we must be able to make the conversion between units using the conversion factors between meters and feet or inches, as described in Section 1.9.

Before substituting numerical values into an equation, try to mentally establish a reasonable range of solutions for comparison purposes. For instance, if a car travels 4000 ft in 1 min, does it seem reasonable that the speed would be 4000 mph? Obviously not! This self-checking procedure is particularly important in this day of the handheld calculator, when ridiculous results may be accepted simply because they appear on the digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of data, then it should be applied to the numerical value.

To state that v = 44.71 without including the unit of measurement *mph* is meaningless.

Eq. (1.1) is not a difficult one. A simple algebraic manipulation will result in the solution for any one of the three variables. However, in light of the number of questions arising from this equation, the reader may wonder if the difficulty associated with an equation will increase at the same rate as the number of terms in the equation. In the broad sense, this will not be the case. There is, of course, more room for a mathematical error with a more complex equation, but once the proper system of units is chosen and each term properly found in that system, there should be very little added difficulty associated with an equation requiring an increased number of mathematical calculations.

In review, before substituting numerical values into an equation, be absolutely sure of the following:

- 1. Each quantity has the proper unit of measurement as defined by the equation.
- 2. The proper magnitude of each quantity as determined by the defining equation is substituted.
- 3. Each quantity is in the same system of units (or as defined by the equation).
- 4. The magnitude of the result is of a reasonable nature when compared to the level of the substituted quantities.
- 5. The proper unit of measurement is applied to the result.

1.4 SYSTEMS OF UNITS

In the past, the *systems of units* most commonly used were the English and metric, as outlined in Table 1.1. Note that while the English system is based on a single standard, the metric is subdivided into two interrelated standards: the **MKS** and the **CGS**. Fundamental quantities of these systems are compared in Table 1.1 along with their abbreviations. The MKS and CGS systems draw their names from the units of measurement used with each system; the MKS system uses *Meters*, *K*ilograms, and *Seconds*, while the CGS system uses *C*entimeters, *G*rams, and *Seconds*.