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without having to refer to the calculator manual provided. 
In some cases, short-cut methods are introduced that are 
helpful in what they can perform in the shortest of time. In 
every respect we feel the TI-89 will serve the student well 
in their current studies and those to follow.

The feedback we have received from users of the thir-
teenth edition has been very helpful in defining areas that 
needed additional explanation and coverage. We always 
consider the effort to share feedback to be extraordinary 
since the instructor has so many other obligations in today’s 
teaching environment. The comments we have received 
directly from users regarding potential errors in the solu-
tions were taken seriously; and we reviewed their com-
ments carefully to ensure that the content is correct and 
clarified. However, if you have questions about any of the 
content or solutions, we welcome your comments and will 
respond to any inquiry as soon as possible.

We realize there is always room for improvement, and 
while not as obvious as it was in earlier editions, there is 
always something you can do to take the text one step 
higher.

Robert L. Boylestad
Brian A. Olivari

Welcome to the fourteenth edition. Over the fifty plus years 
since the first edition in 1968, the revisions have typically 
involved adding additional content based on the changes in 
curriculum. This new fourteenth edition is more about 
refining and updating content to provide a revision that 
ensures that the most current and relevant content is 
 provided.

We are also excited about the ways students can pur-
chase this textbook to ensure that they have the most effec-
tive and affordable options.

Students can choose from the affordable, rent-to-own 
print book option or a variety of eText options. With the 
Pearson eText, students can search the text, use the study 
tools such as flashcards, make notes online, print out read-
ing assignments that incorporate the notes they take during 
lectures, and bookmark important passages for later review.

The most notable changes include the following:

• The over 2000 images are as current as possible with 
many new or modified for this edition.

• The overall design of the text has been updated and 
enhanced for a more modern, accessible layout.

• The Multisim and PSpice computer material has been 
removed based on the vast majority of reviewers stating 
it was not covered. This valuable feedback indicated the 
importance of covering fundamental theories clearly 
rather than focusing on the mechanics of applying com-
puter methods.

• Topics requiring a solid understanding of power factor, 
lead, and lag concepts have been significantly enhanced 
throughout the text.

• Laboratory experiments and summary of equations to 
accompany the text have been carefully reviewed for 
accuracy and changes made where required.

• Problems were carefully reviewed to ensure that they 
progressed from the simple to the more complex in each 
section.

• All solutions were checked carefully to ensure accuracy.

The TI 89 Titanium calculator continues to be the choice 
for this text, and we have provided sufficient detail in the 
text to perform all the mathematical techniques required 

Preface
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SUPPLEMENTS
To enhance the learning process, a full supplements pack-
age accompanies this text and is available to students and 
instructors using the text for a course.

Student Resources
• Laboratory Manual, ISBN 9780137594146

Instructor Resources
Instructor Resources can be downloaded at www.pearson-
highered.com/irc. If you don’t already have a username  
and password for access, you can request access at  
www.pearsonhighered.com/irc.

• Instructor’s Resource Manual, containing text solutions.

Alternative Versions Available
• Print: The fourteenth edition is now available as an 

 affordable, rent-to-own option.
• eBooks: This text is also available in multiple eBook 

formats. These are a great choice for busy students that 
are looking to save money. As an alternative to renting/
purchasing the printed textbook, students can purchase 
an electronic version of the same content. Pearson eText 
is an easy-to-use digital textbook. It lets students cus-
tomize how they study and learn with enhanced search 
and the ability to create flashcards, highlight, add notes, 
and listen to the audio version all in one place. The 
mobile app lets students learn wherever life takes them, 
offline or online. For more information on Pearson 
eText, visit www.pearson.com/learner.

www.pearsonhighered.com/irc.
www.pearsonhighered.com/irc
www.pearson.com/learner
www.pearsonhighered.com/irc.
www.pearson.com/learner
www.pearsonhighered.com/irc
www.pearsonhighered
www.pearsonhighered
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1  Introduction

 1.1 THE ELECTRICAL /ELECTRONICS INDUSTRY
Over the past few decades, technology has been changing at an ever-increasing rate. The 
pressure to develop new products, improve the performance and reliability of existing sys-
tems, and create new markets will only accelerate that rate. This pressure, however, is also 
what makes this field so exciting. New ways of storing and manipulating information, manu-
facturing integrated circuits, and developing software-embedded hardware systems that can 
“think” on their own based on input data are only a few possibilities.

Change has always been part of the human experience, but in the past, it was gradual. In 
recent years, however, the rate at which change in the electrical/electronics industry has been 
taking place is mind-boggling. Just think, for example, it was only a few years ago that 
“flatscreen” TVs, with wide, flat screens were introduced. Already, these have been eclipsed 
by much wider 4K ultra high definition (UHD) and 3D models.

Miniaturization has resulted in huge advances in electronic systems. For example, 
advancement in this technology has allowed cell phones that originally were the size of note-
books to now be smaller than a deck of playing cards. These so-called smartphones (devices), 
such as an iPhone 12 (2020), provide a multitude of extremely desirable features, in addition 
to being able to make simple telephone calls. Such features include a multi-touch glass capac-
itive screen, mp3 music player (iPod capability), web browser, email, text messaging, calen-
dar and contacts, mobile game player, facial recognition (for security purposes), 4K HD 
video recording, high-resolution camera, video conferencing (FaceTime), GPS, Bluetooth, 
Wi-Fi, and the ability to run over 2  million software applications “Apps,” to name a few. 
Remarkably, this iPhone can also simultaneously store in its 256 GB memory: 6000 songs, 
30,000 photos, as well as 18 hours of 4K video recorded at 30 fps. The Apple Watch, and 
other “smartwatches,” provide smartphone users with the ability to extend some of their 
devices’ capabilities to their wrists. Of course, laptop computers, iPads, and the like, have 
become ubiquitous in our society, primarily due to rapid technological advances in electronic 
systems. Nearly invisible and more powerful hearing aids with background noise cancellation 
features are now available for the hearing impaired. The list of new or improved products 

•  Become aware of the rapid growth of the electrical/
electronics industry over the past century.

• Understand the importance of applying a unit of 
measurement to a result or measurement and to 
ensure that the numerical values substituted into 
an equation are consistent with the unit of 
measurement of the various quantities.

• Become familiar with the International System of 
Units (SI) also referred to as the metric system.

• Understand the importance of powers of ten and 
how to work with them in any numerical 
calculation.

• Be able to convert any quantity, in any system of 
units, to another system with confidence.

 Objectives
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continues to expand because significantly smaller electronic systems 
have been developed.

Most of us would agree that the computer has revolutionized our 
daily lives, in ways never imagined not that long ago—and it continues 
to do so in an accelerated fashion. When we compare the Guidance 
Computer aboard the Apollo 11 spacecraft, which landed on the moon 
back in 1969, with a commonly used cell phone in use today (the 
iPhone), we discover Apollo’s computer weighed 70 pounds and 
offered 2.3 MHz of processing power. Whereas, the performance data 
for even a much older generation iPhone 6 (2014) is staggering. At 3.36 
billion instructions per second, the iPhone 6’s clock is 32,600 times 
faster than the best on board computers of the Apollo era and could 
perform instructions 120,000,000 times faster. You wouldn’t be wrong 
in saying an iPhone could be used to guide 120,000,000 Apollo-era 
spacecrafts to the moon, all at the same time. And . . . the iPhone weighs 
a mere 4.6 ounces!

Spurred on by the continuing process of miniaturization is a serious 
and growing interest in artificial intelligence, a term first used in 1955, 
as a drive to replicate the brain’s function with a packaged electronic 
equivalent. Although only about 3 pounds in weight, a size equivalent to 
about 2.5 pints of liquid with a power drain of about 20 watts (half that 
of a 40-watt light bulb), the brain contains over 100 billion neurons that 
have the ability to “fire” 200 times a second. Imagine the number of 
decisions made per second if all are firing at the same time! This num-
ber, however, is undaunting to researchers who feel that an electronic 
package capable of emulating the human brain is a genuine possibility 
in the next 10 to 15 years. Of course, including emotional qualities will 
be the biggest challenge, but otherwise researchers feel the advances of 
recent years are clear evidence that it is a real possibility. Consider how 
much of our daily lives is already decided for us with automatic brake 
control, programmed parallel parking, GPS, Web searching, and so on. 
The move is obviously strong and on its way. Also, when you consider 
how far we have come since the development of the first transistor some 
67 years ago, who knows what might develop in the next decade or two?

This reduction in size of electronic systems is due primarily to an 
important innovation introduced in 1958—the integrated circuit (IC). 
An integrated circuit can now contain features less than 50 nanometers 
across. The fact that measurements are now being made in nanometers 
has resulted in the terminology nanotechnology to refer to the production 
of integrated circuits called nanochips. To better appreciate the impact of 
nanometer measurements, consider drawing 100 lines within the boundar-
ies of 1 inch. Then attempt drawing 1000 lines within the same length. 
Cutting 50-nanometer features would require drawing over 500,000 lines 
in 1 inch. The integrated circuit shown in Fig. 1.1 is an intel® CoreTM i7 
6-core processor that has around 3 billion transistors—a number hard to 
comprehend.

However, before a decision is made on such dramatic reductions in 
size, the system must be designed and tested to determine if it is worth 
constructing as an integrated circuit. That design process requires engi-
neers who know the characteristics of each device used in the system, 
including undesirable characteristics that are part of any electronic 
 element. In other words, there are no ideal (perfect) elements in an elec-
tronic design. Considering the limitations of each component is necessary 
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to ensure a reliable response under all conditions of temperature, vibra-
tion, and effects of the surrounding environment. To develop this aware-
ness requires time and must begin with understanding the basic 
characteristics of the device, as covered in this text. One of the objectives 
of this text is to explain how ideal components work and their function in 
a network. Another is to explain conditions in which components may not 
be ideal.

One of the very positive aspects of the learning process associated 
with electric and electronic circuits is that once a concept or procedure 
is clearly and correctly understood, it will be useful throughout the 
career of the individual at any level in the industry. Once a law or equa-
tion is understood, it will not be replaced by another equation as the 
material becomes more advanced and complicated. For instance, one of 
the first laws to be introduced is Ohm’s law. This law provides a rela-
tionship between forces and components that will always be true, no 
matter how complicated the system becomes. In fact, it is an equation 
that will be applied in various forms throughout the design of the entire 
system. The use of the basic laws may change, but the laws will not 
change and will always be applicable.

It is vitally important to understand that the learning process for cir-
cuit analysis is sequential. That is, the first few chapters establish the 
foundation for the remaining chapters. Failure to properly understand 
the opening chapters will only lead to difficulties understanding the 
material in the chapters to follow. This first chapter provides a brief his-
tory of the field followed by a review of mathematical concepts neces-
sary to understand the rest of the material.

1.2 A BRIEF HISTORY
In the sciences, once a hypothesis is proven and accepted, it becomes 
one of the building blocks of that area of study, permitting additional 
investigation and development. Naturally, the more pieces of a puzzle 
available, the more obvious is the avenue toward a possible solution. In 
fact, history demonstrates that a single development may provide the 
key that will result in a mushrooming effect that brings the science to a 
new plateau of understanding and impact.

If the opportunity presents itself, read one of the many publications 
reviewing the history of this field. Space requirements are such that only 
a brief review can be provided here. There are many more contributors 

FIG. 1.1
Intel® Core™ i7 6-core processer.
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than could be listed, and their efforts have often provided important keys 
to the solution of some very important concepts.

Throughout history, some periods were characterized by what appeared 
to be an explosion of interest and development in particular areas. As you 
will see from the discussion of the late 1700s and the early 1800s, inven-
tions, discoveries, and theories came fast and furiously. Each new concept 
broadens the possible areas of application until it becomes almost impos-
sible to trace developments without picking a particular area of interest 
and following it through. In the review, as you read about the development 
of radio, television, and computers, keep in mind that similar progressive 
steps were occurring in the areas of the telegraph, the telephone, power 
generation, the phonograph, appliances, and so on.

There is a tendency when reading about the great scientists, inventors, 
and innovators to believe that their contribution was a totally individual 
effort. In many instances, this was not the case. In fact, many of the great 
contributors had friends or associates who provided support and encour-
agement in their efforts to investigate various theories. At the very least, 
they were aware of one another’s efforts to the degree possible in the days 
when a letter was often the best form of communication. In particular, 
note the closeness of the dates during periods of rapid development. One 
contributor seemed to spur on the efforts of the others or possibly pro-
vided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or 
computer engineers as we know them today. In most cases, they were 
physicists, chemists, mathematicians, or even philosophers. In addition, 
they were not from one or two communities of the Old World. The home 
country of many of the major contributors introduced in the paragraphs 
to follow is provided to show that almost every established community 
had some impact on the development of the fundamental laws of electri-
cal circuits.

As you proceed through the remaining chapters of the text, you will 
find that a number of the units of measurement bear the name of major 
contributors in those areas—volt after Count Alessandro Volta, ampere 
after André Ampère, ohm after Georg Ohm, and so forth—fitting recogni-
tion for their important contributions to the birth of a major field of study.

Time charts indicating a limited number of major developments are 
provided in Fig. 1.2, primarily to identify specific periods of rapid devel-
opment and to reveal how far we have come in the last 40 years. In 
essence, the current state of the art is a result of efforts that began in 
earnest some 250 years ago, with progress in the last 100 years being 
almost exponential.

As you read through the following brief review, try to sense the grow-
ing interest in the field and the enthusiasm and excitement that must 
have accompanied each new revelation. Although you may find some of 
the terms used in the review new and essentially meaningless, the 
remaining chapters will explain them thoroughly.

The Beginning

The phenomenon of static electricity has intrigued scholars throughout 
history. The Greeks called the fossil resin substance so often used to 
demonstrate the effects of static electricity elektron, but no extensive 
study was made of the subject until William Gilbert researched the phe-
nomenon in 1600. In the years to follow, there was a continuing investi-
gation of electrostatic charge by many individuals, such as Otto von 



A BtEF HSnrtY | | | 5S
S

   I

Guericke, who developed the first machine to generate large amounts of 
charge, and Stephen Gray, who was able to transmit electrical charge 
over long distances on silk threads. Charles DuFay demonstrated that 
charges either attract or repel each other, leading him to believe that 
there were two types of charge—a theory we subscribe to today with our 
defined positive and negative charges.

There are many who believe that the true beginnings of the electrical 
era lie with the efforts of Pieter van Musschenbroek and Benjamin 
Franklin. In 1745, van Musschenbroek introduced the Leyden jar for 
the storage of electrical charge (the first capacitor) and demonstrated 
electrical shock (and therefore the power of this new form of energy). 
Franklin used the Leyden jar some 7 years later to establish that light-
ning is simply an electrical discharge, and he expanded on a number of 
other important theories, including the definition of the two types of 
charge as positive and negative. From this point on, new discoveries and 
theories seemed to occur at an increasing rate as the number of individu-
als performing research in the area grew.

In 1784, Charles Coulomb demonstrated in Paris that the force 
between charges is inversely related to the square of the distance 
between the charges. In 1791, Luigi Galvani, professor of anatomy at 
the University of Bologna, Italy, performed experiments on the effects 
of electricity on animal nerves and muscles. The first voltaic cell, with 
its ability to produce electricity through the chemical action of a metal 
dissolving in an acid, was developed by another Italian, Alessandro 
Volta, in 1799.

The fever pitch continued into the early 1800s, with Hans Christian 
Oersted, a Danish professor of physics, announcing in 1820 a relationship 
between magnetism and electricity that serves as the foundation for the 
theory of electromagnetism as we know it today. In the same year, a 
French physicist, André Ampère, demonstrated that there are magnetic 
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effects around every current-carrying conductor and that  current-carrying 
conductors can attract and repel each other just like magnets. In the period 
1826 to 1827, a German physicist, Georg Ohm, introduced an important 
relationship between potential, current, and resistance that we now refer to 
as Ohm’s law. In 1831, an English physicist, Michael Faraday, demon-
strated his theory of electromagnetic induction, whereby a changing cur-
rent in one coil can induce a changing current in another coil, even though 
the two coils are not directly connected. Faraday also did extensive work 
on a storage device he called the condenser, which we refer to today as a 
capacitor. He introduced the idea of adding a dielectric between the plates 
of a capacitor to increase the storage capacity (Chapter 10). James Clerk 
Maxwell, a Scottish professor of natural philosophy, performed extensive 
mathematical analyses to develop what are currently called Maxwell’s 
equations, which support the efforts of Faraday linking electric and mag-
netic effects. Maxwell also developed the electromagnetic theory of light 
in 1862, which, among other things, revealed that electromagnetic waves 
travel through air at the velocity of light (186,000 miles per second or 

×3 108 meters per second). In 1888, a German physicist, Heinrich 
Rudolph Hertz, through experimentation with lower-frequency electro-
magnetic waves (microwaves), substantiated Maxwell’s predictions and 
equations. In the mid-1800s, Gustav Robert Kirchhoff introduced a series 
of laws of voltages and currents that find application at every level and 
area of this field (Chapters 5 and 6). In 1895, another German physicist, 
Wilhelm Röntgen, discovered electromagnetic waves of high frequency, 
commonly called X-rays today.

By the end of the 1800s, a significant number of the fundamental 
equations, laws, and relationships had been established, and various 
fields of study, including electricity, electronics, power generation and 
distribution, and communication systems, started to develop in earnest.

The Age of Electronics

Radio The true beginning of the electronics era is open to debate and 
is sometimes attributed to efforts by early scientists in applying poten-
tials across evacuated glass envelopes. However, many trace the begin-
ning to Thomas Edison, who added a metallic electrode to the vacuum of 
the tube and discovered that a current was established between the metal 
electrode and the filament when a positive voltage was applied to the 
metal electrode. The phenomenon, demonstrated in 1883, was  referred 
to as the Edison effect. In the period to follow, the transmission of radio 
waves and the development of the radio received widespread attention. 
In 1887, Heinrich Hertz, in his efforts to verify Maxwell’s equations, 
transmitted radio waves for the first time in his laboratory. In 1896, 
an Italian scientist, Guglielmo Marconi (often called the father of the 
radio), demonstrated that telegraph signals could be sent through the air 
over long distances (2.5 kilometers) using a grounded antenna. In the 
same year, Aleksandr Popov sent what might have been the first radio 
message some 300 yards. The message was the name “Heinrich Hertz” 
in respect for Hertz’s earlier contributions. In 1901, Marconi established 
radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison to 
develop the first diode, commonly called Fleming’s valve—actually the 
first of the electronic devices. The device had a profound impact on the 
design of detectors in the receiving section of radios. In 1906, Lee De 
Forest added a third element to the vacuum structure and created the 
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first amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong 
built the first regenerative circuit to improve receiver capabilities and 
then used the same contribution to develop the first nonmechanical 
oscillator. By 1915, radio signals were being transmitted across the 
United States, and in 1918 Armstrong applied for a patent for the super-
heterodyne circuit employed in virtually every television and radio to 
permit amplification at one frequency rather than at the full range of 
incoming signals. The major components of the modern-day radio were 
now in place, and sales in radios grew from a few million dollars in the 
early 1920s to over $1 billion by the 1930s. The 1930s were truly the 
golden years of radio, with a wide range of productions for the listening 
audience.

Television (TV) The 1930s were also the true beginnings of the 
television era, although development on the picture tube began in ear-
lier years with Paul Nipkow and his electrical telescope in 1884 and 
John Baird and his long list of successes, including the transmission of 
television pictures over telephone lines in 1927 and over radio waves in 
1928, and simultaneous transmission of pictures and sound in 1930. In 
1932, NBC installed the first commercial television antenna on top of 
the Empire State Building in New York City, and RCA began regular 
broadcasting in 1939. World War II slowed development and sales, but 
in the mid-1940s the number of TV sets grew from a few thousand to a 
few million. Color television became popular in the early 1960s.

 Computers The earliest computer system can be traced back to 
Blaise Pascal in 1642 with his mechanical machine for adding and 
subtracting numbers. In 1673, Gottfried Wilhelm von Leibniz used the 
Leibniz wheel to add multiplication and division to the range of opera-
tions, and in 1823 Charles Babbage developed the difference engine to 
add the mathematical operations of sine, cosine, logarithms, and several 
others. In the years to follow, improvements were made, but the system 
remained primarily mechanical until the 1930s when electromechanical 
systems using components such as relays were introduced. It was not 
until the 1940s that totally electronic systems became the new wave. It 
is interesting to note that, even though IBM was formed in 1924, it did 
not enter the computer industry until 1937. An entirely electronic system 
known as ENIAC was dedicated at the University of Pennsylvania in 
1946. It contained 18,000 tubes and weighed 30 tons but was several 
times faster than most electromechanical systems. Although other vac-
uum tube systems were built, it was not until the birth of the solid-state 
era that computer systems experienced a major change in size, speed, 
and capability.

The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H. 
Brattain of Bell Telephone Laboratories demonstrated the point-contact 
transistor (Fig. 1.3), an amplifier constructed entirely of solid-state 
materials with no requirement for a vacuum, glass envelope, or heater 
voltage for the filament. Although reluctant at first due to the vast 
amount of material available on the design, analysis, and synthesis of 
tube networks, the industry eventually accepted this new technology as 
the wave of the future. In 1958, the first integrated circuit (IC) chip 
was developed at Texas Instruments, and in 1961 the first commercial SSPL/Getty Images

FIG. 1.3
The first transistor.
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integrated circuit was manufactured by the Fairchild Corporation. Today 
some one trillion integrated circuits are manufactured each year.

It is impossible to review properly the entire history of the electrical/ 
electronics field in a few pages. The effort here, both through the discus-
sion and the time graphs in Fig. 1.2, was to reveal the amazing progress 
of this field in the last 50 years. The growth appears to be truly exponen-
tial since the early 1900s, raising the interesting question, Where do we 
go from here? The time chart suggests that the next few decades will 
probably contain many important innovative contributions that may 
cause an even faster growth curve than we are now experiencing.

1.3 UNITS OF MEASUREMENT
One of the most important rules to remember and apply when working 
in any field of technology is to use the correct units when substituting 
numbers into an equation. Too often we are so intent on obtaining a 
numerical solution that we overlook checking the units associated with 
the numbers being substituted into an equation. Results obtained, there-
fore, are often meaningless. Consider, for example, the following very 
fundamental physics equation:

velocity=v  

 d
t

=v  d distance=  (1.1)
=t time

Assume, for the moment, that the following data are obtained for a mov-
ing object:

=
=

d
t

4000 ft
1 min

and v  is desired in miles per hour. Often, without a second thought or 
consideration, the numerical values are simply substituted into the equa-
tion, with the result here that

= = =d
t

4000 ft

1 min
4000 mphv

As indicated above, the solution is totally incorrect. If the result is 
desired in miles per hour, the unit of measurement for distance must be 
miles, and that for time, hours. In a moment, when the problem is ana-
lyzed properly, the extent of the error will demonstrate the importance 
of ensuring that

the numerical value substituted into an equation must have 
the unit of measurement specified by the equation.

The next question is normally, How do I convert the distance and 
time to the proper unit of measurement? A method is presented in 
 Section 1.9 of this chapter, but for now it is given that

=1 mi 5280 ft

4000 ft 0.76 mi=
= =1 min h 0.017 h1

60

Substituting into Eq. (1.1), we have

= = =v d
t

44 71 mph0.76 mi
0.017 h

.  

which is significantly different from the result obtained before.



SYSnEMS rF dInS | | | 9S
S

   I

To complicate the matter further, suppose the distance is given in 
kilometers, as is now the case on many road signs. First, we must real-
ize that the prefix kilo stands for a multiplier of 1000 (to be introduced 
in Section 1.5), and then we must find the conversion factor between 
kilometers and miles. If this conversion factor is not readily available, 
we must be able to make the conversion between units using the con-
version factors between meters and feet or inches, as described in 
Section 1.9.

Before substituting numerical values into an equation, try to mentally 
establish a reasonable range of solutions for comparison purposes. For 
instance, if a car travels 4000 ft in 1 min, does it seem reasonable that 
the speed would be 4000 mph? Obviously not! This self-checking pro-
cedure is particularly important in this day of the handheld calculator, 
when ridiculous results may be accepted simply because they appear on 
the digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of 
data, then it should be applied to the numerical value.

To state that = 44.71v  without including the unit of measurement mph 
is meaningless.

Eq. (1.1) is not a difficult one. A simple algebraic manipulation will 
result in the solution for any one of the three variables. However, in light 
of the number of questions arising from this equation, the reader may 
wonder if the difficulty associated with an equation will increase at the 
same rate as the number of terms in the equation. In the broad sense, this 
will not be the case. There is, of course, more room for a mathematical 
error with a more complex equation, but once the proper system of units 
is chosen and each term properly found in that system, there should be 
very little added difficulty associated with an equation requiring an 
increased number of mathematical calculations.

In review, before substituting numerical values into an equation, be 
absolutely sure of the following:

1. Each quantity has the proper unit of measurement as 
defined by the equation.

2. The proper magnitude of each quantity as determined by 
the defining equation is substituted.

3. Each quantity is in the same system of units (or as defined 
by the equation).

4. The magnitude of the result is of a reasonable nature when 
compared to the level of the substituted quantities.

5. The proper unit of measurement is applied to the result.

1.4 SYSTEMS OF UNITS
In the past, the systems of units most commonly used were the English 
and metric, as outlined in Table 1.1. Note that while the English sys-
tem is based on a single standard, the metric is subdivided into two 
interrelated standards: the MKS and the CGS. Fundamental quantities 
of these systems are compared in Table 1.1 along with their abbrevia-
tions. The MKS and CGS systems draw their names from the units of 
measurement used with each system; the MKS system uses Meters, 
Kilograms, and Seconds, while the CGS system uses Centimeters, 
Grams, and Seconds.




